
Collecting, classifying, and analyzing 
textual data using R

Wednesday, June 5th, 2024
3rd Summer Training on Qualitative and Quantitative Methods
Universitas Islam Internasional Indonesia

Aichiro Suryo Prabowo
aichiro@cornell.edu



2

09.30-10.45 : Session 1, introduction
10.45-11.00 : Break (15 minutes)
11.00-12.15 : Session 2, importing text data
12.15-13.15 : Break (60 minutes)
13.15-14.45 : Session 3, analyzing text data
14.45-15.00 : Break (15 minutes)
15.00-15.30 : Session 4, wrap-up
15.30-16.15 : Session 4 (optional) individual discussions

Agenda (09:30 – 16:15)



Photos, illustrations, graphics here.

3

Session 1
Introduction and setup



4

• Information-rich, but underexplored

• Textual analysis is not entirely new

• Going through texts is time-consuming. That's where the 
computer comes in handy.

• R is a computer language. The application is called RStudio, 
which is free and easy to use. Note that there are other languages 
and applications. Click here to read the instructions for 
downloading RStudio.

Why text-as-data?

https://rstudio-education.github.io/hopr/starting.html
https://cran.r-project.org/


5

• What terms (or n-grams) are mentioned most 
frequently?

• What are the key themes within a collection of 
documents?

• What is the emotional tone (i.e., sentiment) behind a 
body of text?

Questions that can be answered



6

• Is there correlation?
• Is there causality?

• You might want to combine textual analysis with other 
methods, such as categorical data analysis, panel data 
analysis, survey and sampling methods, etc.

• Please take a look at other sessions in STQ2M.

Question that can not be answered



7

• You’ll learn some useful techniques, but they’re not 
exhaustive.

• Computational text analysis is a growing method. It is not 
perfect. Some scholars remain skeptical about its reliability.

• The goal of today’s session is not to train you to become an 
expert. Instead, it is to draw you into this area, hoping that 
you’ll then become part of the community that will apply, 
refine, and extend the methodology.

Caveats



8

• We’ll be coding on an “R Script”

• Before we’re able to run a code, install the R package
install.packages(“tidyverse”)

• Once installed, load the R package to have it activated
library(tidyverse)

• For help
?tidyverse

RStudio basics



9

Clearing R environment to start
rm(list = ls()) #rm stands for remove

Specifying a working directory on your computer
setwd("Documents/…") #change to your folder

Assigning left-arrow operator
`X` <- `Y` means assign the value (or operation) on the right-hand side (Y) 
to the object on the left-hand side (X)

A few more details



10

readr : to import CSV files
haven : to import STATA files
dplyr : to manipulate data
tidyr : to tidy data
ggplot2 : to visualize data

There are more packages in R.

library(tidyverse) includes:



Photos, illustrations, graphics here.

11

Session 2
Importing text data



12

Steps in computational text analysis

Import data

Create corpus

Tokenize and create document-
term-matrix

Remove stop words

Remove punctuations, numbers

Analyze
“p

re
pr

oc
es

si
ng

”



13

1. Importing raw text data to R
2. Transforming raw text data into a corpus
3. Inspecting basic statistics of the corpus

What’s the objective of this exercise?



14

Anywhere, including:

• Files (PDF, CSV, etc.)
• Website
• Social media: twitter, etc.
• Archival documents, usually these are manually-

scanned

Where could we find text data?



15

install.packages("tidyverse") #if you haven’t, install the package
library(tidyverse) #load the package
read.csv("pidato.csv") #read the csv file

Importing text data from CSV files



16

install.packages("tidyverse")   #if you haven’t, install the package
install.packages("rvest") #if you haven’t, install the package
library(tidyverse)  #load the package #load the package
library(rvest) #load the package

url2023 <- "https://bit.ly/3RdKpxk" #enter the target webpage as data source
webpage2023 <- read_html(url2023) #read the HTML content

nodes2023 <- html_nodes(webpage2023, xpath = "//p") #select nodes (e.g., all paragraphs <p> nodes)
p_nodes2023 <- html_text(nodes2023) #extract text content from selected nodes

combined_2023 <- paste(p_nodes2023, collapse = " ") #combine all paragraphs into one document

pidato2023 <- data.frame(year = c(2023),
president = c("joko widodo")) #create a new dataframe

pidato2023$speechtext <- c(combined_2023) #add a new variable for the extracted text
view(pidato2023) #review results

Importing text data from a website



17

Extract the text of the presidential speech from 2022 on 
this webpage:
https://bit.ly/4aKkhkt

Then, combine the 2023 and 2022 data frames into one 
data frame. There are multiple ways to do this, and one of 
them is: 
`rbind(dataframe1, dataframe2)`

Your turn!

https://bit.ly/4aKkhkt


18

url2022 <- "https://bit.ly/4aKkhkt" #enter the target webpage as data source
webpage2022 <- read_html(url2022) #read the HTML content

nodes2022 <- html_nodes(webpage2022, xpath = "//p") #select nodes (e.g., all paragraphs <p> nodes)
p_nodes2022 <- html_text(nodes2022) #extract text content from selected nodes

combined_2022 <- paste(p_nodes2022, collapse = " ") #combine all paragraphs into one document

pidato2022 <- data.frame(year = c(2022),
president = c("joko widodo")) #create a new dataframe

pidato2022$speechtext <- c(combined_2022) #add a new variable for the extracted text
view(pidato2022) #review results

pidato2 <- rbind(pidato2022, pidato2023) #combine the two dataframes
view(pidato2) #review results

Your turn!



19

#Option #1, which was done previously
url2023 <- "https://bit.ly/3RdKpxk" #enter the target webpage as data source
webpage2023 <- read_html(url2023) #read the HTML content

nodes2023 <- html_nodes(webpage2023, xpath = "//p") #select nodes (e.g., all paragraphs <p> nodes)
p_nodes2023 <- html_text(nodes2023) #extract text content from selected nodes

#Option #2, incorporating R pipes
url2023 <- "https://bit.ly/3RdKpxk" #enter the target webpage as data source
p_nodes2023 <- webpage2023 %>%
html_nodes(xpath = "//p") %>%
html_text() #combine all the remaining steps

#Options #1 and #2 should generate identical results!

Alternative functions for web scraping



20

Steps in computational text analysis

Import data

Create corpus

Tokenize and create document-
term-matrix

Remove stop words

Remove punctuations, numbers

Analyze
“p

re
pr

oc
es

si
ng

”



21

#from this point onward, we’ll be working with “pidato.csv”

speechanalysis <- read.csv("pidato.csv") #import the csv file
view(speechanalysis) #inspect the imported data

install.packages("quanteda") #if you haven’t, install the package
library(quanteda) #load the package

pidato_corpus <- corpus(speechanalysis, text_field = 'speechtext’) #create the corpus
pidato_statistics <- summary(pidato_corpus) #get the summary statistics
view(pidato_statistics) #view results
write.csv(pidato_statistics,"pidato_statistics.csv") #save results as a csv file

#How many types (unique terms), tokens (terms), and sentences do you see in each presidential 
speech?

Creating corpus based on imported data



Photos, illustrations, graphics here.

22

Session 3
Analyzing text data



23

1. Constructing document-term-matrix to identify the 
most frequent terms in a given document

2. Analyzing the context of a keyword based on 
surrounding words

What’s the objective of this exercise?



24

Tokenizing text data breaks down large bodies of text into 
individual terms.

DTM represent the frequency that a term appears in a set of 
documents. It is structured as follows:
Rows = documents
Columns = terms
Cells = ?

Tokenization & document-term matrix



25

pidato_token <- tokens(pidato_corpus) #tokenize words in the corpus
pidato_token
pidato_dtm <- dfm(pidato_token) #construct DTM

topfeatures(pidato_dtm, 5) #identify the 5 most frequent terms

Tokenization & document-term matrix



26

Using the same tokens and DTM, identify the 5 most frequent terms each 
year. Then expand your result to identify the 20 most frequent terms. Discuss 
what you’ve found.

pidato_token <- tokens(pidato_corpus) #tokenize words in the corpus
pidato_token
pidato_dtm <- dfm(pidato_token) #construct DTM

topfeatures(pidato_dtm, 5) #identify the 5 most frequent terms
topfeatures(pidato_dtm, 5, groups=year) #identify the 5 most frequent terms each year

topfeatures(pidato_dtm, 20) #identify the 20 most frequent terms
topfeatures(pidato_dtm, 20, groups=year) #identify the 20 most frequent terms each year

Your turn!



27

library(stopwords) #load the package
head(stopwords::stopwords("id", source = "stopwords-iso"), 20) #show the list of stopwords
pidato_token2 <- tokens_remove(tokens(pidato_corpus), 
stopwords("id", source = "stopwords-iso")) #remove stopwords (indonesian)

pidato_dtm2 <- dfm(pidato_token2) #create dtm after stopwords removed
topfeatures(pidato_dtm2, 5) #identify the 5 most frequent terms
topfeatures(pidato_dtm2, 5, groups=year) #identify the 5 most frequent terms each year
#what looks different compared to the previous result?

pidato_token2 <- tokens(pidato_token2, what = "word",
remove_punct = TRUE, remove_numbers = TRUE,) #remove punctuations and numbers

pidato_dtm2 <- dfm(pidato_token2) #create dtm after punctuations removed
topfeatures(pidato_dtm2, 5) #identify the 5 most frequent terms
topfeatures(pidato_dtm2, 5, groups=year) #identify the 5 most frequent terms each year
#what looks different compared to the previous result?

Removing stopwords, punctuations, numbers



28

Steps in computational text analysis

Import data

Create corpus

Tokenize and create document-
term-matrix

Remove stop words

Remove punctuations, numbers

Analyze
“p

re
pr

oc
es

si
ng

”



29

library(quanteda.textplots)
textplot_wordcloud(pidato_dtm2, max_words = 20) #top 20 (most frequent) words
textplot_wordcloud(pidato_dtm2, max_words = 20, 
color = c('brown','red’)) #change colors

Wordclouds



30

Create a word cloud based on the following text data:

Presidential speech on 16 August 2009
Presidential speech on 16 August 2010
Presidential speech on 16 August 2011

Compare with the speeches we’ve previously analyzed.

Your turn!

https://www.setneg.go.id/baca/index/pidato_kenegaraan_presiden_republik_indonesia_dalam_rangka_hut_ke-64_proklamasi_kemerdekaan_ri
https://www.setneg.go.id/baca/index/pidato_kenegaraan_presiden_republik_indonesia_16_agustus_2010
https://www.setneg.go.id/baca/index/pidato_presiden_ri_pada_penyampaian_keterangan_pemerintah_atas_ruu_apbn_jakarta_16_agustus_2011


31

#A keyword-in-context shows words in the vicinity of a given keyword, allowing us to infer the 
context. This is a helpful feature that complements word cloud analysis.

#kwic = economy
pidato_context_econ <- kwic(tokens(pidato_corpus), 'ekonomi', window = 5)
pidato_context_econ

#kwic = environment
pidato_context_envi <- kwic(tokens(pidato_corpus), 'hutan', window = 5)
pidato_context_envi

Keyword-in-context (KWIC)



32

Perform KWIC analysis based on 3 keywords of your 
choosing.

Your turn!



33

#Latent Dirichlet Allocation (LDA) is a popular statistical model used for topic modeling, which 
discovers the underlying topics in a collection of documents

library(topicmodels) #load the package

pidato_lda = convert(pidato_dtm2, to = "topicmodels") #convert to a format compatible to TM
set.seed(1) #set seed to any number for reproducibility
pidato_topics = LDA(pidato_lda, k=3) #specify the number of topics

terms(pidato_topics, 6) #see results

Topic modeling



Photos, illustrations, graphics here.

34

Session 4
Wrap-up


